Integrated Millimeter-Wave Frequency Synthesizer based on Low-Power and Low-Noise Sub-Sampling Phase-Locked Loop

Hao Wang
Postdoctoral Scholar, HISIES Lab, UC Davis
1/12/2022
Outline

- Apps & Pros of On-Chip mmWave Signal Generation
- Existing Topologies for Frequency Synthesis
- Low-Power & Low-Noise mmWave SSPLL
 - Proposed Dividerless Frequency Acquisition for SSPLL
 - Prototype 8.8mW 40.5GHz SSPLL
- Charge Pump Current Mismatch Compensation for SSPLL
 - Proposed compensation technique for SSPLL
 - Prototype SSPLL with CP compensation
- Conclusion
Applications of On-Chip mmWave Signal Generation

5G/6G Comm, Radar, Internet Of Things, Chemical Sensor, Heart-beat & Respiration Sensing

SatCom, Atomic Clock Excitation, Imaging, Biomedical

Favored Specifications:
• Low Power Consumption
• Low Noise (Pure Signal)
Pros of On-Chip mmWave SigGen

Mini Hg Ion Clock
- 4cm x 4cm x 4cm
- (40GHz mmW IC: 10mW)

Displacement & Vibration Sensing
- Laser Vibrometer
 - Resolution: 25nm
 - Power: 4W
 - Price: $4000

- 200GHz FMCW
 - Resolution: 54um
 - Power: 68mW

Biomedical Sensing
- Label-Free Detection
- Antigen-Antibody Reaction
- Evaluation of Micro-Organisms

60/120GHz Dielectric Sensor
- (40GHz mmW IC: 10mW)
- (mmW IC: 35mW)

Discrete mmW SigGen: 200mW

[Hoang, JPL & DARPA, IFCS 2021]

[Displacement & Vibration Sensing]

[Naghavi, ISSCC 2021]

[Mitsunaka, JSSC 2016]
Outline

☐ Apps & Pros of On-Chip mmWave Signal Generation

☐ Existing Topologies for Frequency Synthesis

☐ Low-Power & Low-Noise mmWave SSPLL
 ☐ Proposed Dividerless Frequency Acquisition for SSPLL
 ☐ Prototype 8.8mW 40.5GHz SSPLL

☐ Charge Pump Current Mismatch Compensation for SSPLL
 ☐ Proposed compensation technique for SSPLL
 ☐ Prototype SSPLL with CP compensation

☐ Conclusion
Background: PLL & SSPLL

Phase-Locked Loop (PLL)

Sub-Sampling PLL (SSPLL)

Frequency-acquisition is a must.
Existing Topologies for Frequency Synthesis

Traditional PLL:
- High phase noise (PN)
- mmWave ILFD needed:
 - High power
 - Limited locking range
 - Requires injecting power

Traditional SSPLL:
- Low in-band PN
- f_{out} could be any $N \times f_{ref}$, always-on FLL is a must:
 - mmWave ILFD needed
 - High power

Cascaded PLL/SSPLL:
- Moderate power
- No FLL or ILFD, with IF > VCO2’s tuning range
- Added noise from 1st stage
- Constrained IF for low PN

ILFM-based Synthesizers:
- Low PN
- High power
- Limited locking range
- Requires injecting power

Reference-Sampling PLL:
- Not eligible for mmWave
- Need digital rectifier
- Type-I structure (no CP) is necessary for low PN

[Images of different topologies are shown, each with its own set of characteristics and references.]

References:
- K. O CICC ’06
- Szortyka ISSCC ’14
- El-Halwagy RFIC ’16
- A. Li JSSC ’14
- Sharma ISSCC ’18
- UC Davis
Motivation

How to achieve both low-noise & low-power?

A solution: Invent low-power freq-acquisition for SSPLL
Outline

- Apps & Pros of On-Chip mmWave Signal Generation
- Existing Topologies for Frequency Synthesis
- Low-Power & Low-Noise mmWave SSPLL
 - Proposed Dividerless Frequency Acquisition for SSPLL
 - Prototype 8.8mW 40.5GHz SSPLL
- Charge Pump Current Mismatch Compensation for SSPLL
 - Proposed compensation technique for SSPLL
 - Prototype SSPLL with CP compensation
- Conclusion
Proposed Dividerless Freq Acquisition for SSPLL

Dividerless Freq Acquisition (FA)
- Low-power, moderate-noise IF-PLL cascaded to SSPLL for FA
- mmWave ILFD avoided

Low PN mmWave Output
- After FA, SSPLL generates low-noise output with crystal reference

Sub-Sampling Lock Detector (SSLD)
- Automatic lock-status detection and reference switching for FA
- Low-power circuitry

Prototype Design: $f_{ref}=100\text{MHz}$, $IF=900\text{MHz}$, $f_{out}=40.5\text{GHz}$
Prototype 40.5GHz SSPLL with Dividerless FA

Total: 8.8mW

[Wang & Momeni TMTT '21]
Proposed SSLD: Analog Interface

Sampling SSPLL output with IF:

- SSPLL VCO TR designed with **only one** IF harmonic in each bank
- Sampled SSPLL output reflects:
 - $f_{out} = 40.5\text{GHz}$: $f_{det} \approx 0$
 - $f_{out} \neq 40.5\text{GHz}$: $f_{det} \geq f_{ref}$
- Low power in steady state

![Diagram showing sampling of SSPLL output with IF](image)
Proposed SSLD: Digital Logic

Lock Status Detection & FA Procedure

- SSPLL \(f_{\text{fout}} \neq 40.5\text{GHz} \): \(f_{\text{det}} \geq f_{\text{ref}} \)
- Set a threshold: \(0 < f_{\text{th}} < f_{\text{ref}} \)
- Evaluate \(f_{\text{det}} \):
 - D-flip-flop as frequency counter
 - Count \(f_{\text{det}} \) within a time window
- If \(f_{\text{det}} > f_{\text{th}} \), go through FA procedure
 - \(\text{FA}_{\text{EN}}=1 \) to switch IF to SSPLL for FA(S2)
 - \(\text{FA}_{\text{EN}}=0 \) to switch \(f_{\text{ref}} \) back to SSPLL (S3)
 - \(\text{DET}_{\text{EN}}=1 \) to enable lock detection after loop settles (S1)

Prototype Design: \(f_{\text{ref}}=100\text{MHz}, \text{IF}=900\text{MHz}, f_{\text{th}}=40\text{MHz} \)
Different Loop Configurations for Two References

Different Loop Gains & BWs for the Two References

- For **IF**: high gain/BW for fast FA
- For **fref**: Noise-optimized gain/BW
- Gain changed in CP output current
- BW changed by varying LF resistor
- Consider the time sequence in switching
mmWave VCO & Buffers

- VCO TR designed smaller than IF in each bank
- Middle Buffer for better isolation. Two Output Buffers for SSPLL and SSLD, respectively

Measured VCO Tuning Range with Temperature Variation
Measurements: Frequency Spectrum

- **65nm** CMOS process
- Core area **0.6 mm²**
Measurements: Phase Noise

- **PN:** \(-96.6\) dBc/Hz @1MHz, \(-106.9\) dBc/Hz @10MHz
- **Jitter\(_{\text{rms}}\) (10kHz to 100MHz): 228 fs**
- In comparison: significant added noise from IF-PLL

Room Temperature

- **100MHz Ref. (sim)**
- **40.5GHz w/ 100MHz ref. (sim)**

Robust Temperature Tolerance

- **-40°C:** \(-94.6/-111.7\) dBc/Hz @1/10 MHz, Jitter\(_{\text{rms}}\)=235 fs
- **85°C:** \(-96.7/-105.1\) dBc/Hz @1/10MHz, Jitter\(_{\text{rms}}\)=232 fs

Good Temperature-Variation Tolerance

- **-40°C:** -94.6/-111.7 dBc/Hz @1/10 MHz, Jitter\(_{\text{rms}}\)=235 fs
- **85°C:** -96.7/-105.1 dBc/Hz @1/10MHz, Jitter\(_{\text{rms}}\)=232 fs
Measurements: Freq-Acquisition & Ref. Switching

Automatic Lock-Detection & Relock Procedure

- Force a wrong f_{out}, then close the loop and observe the operation of SSLD
- SSLD detects the wrong status and **relocks** the SSPLL to 40.5GHz
- **1us fast FA** with the high-BW loop
- f_{out} deviation after ref. switching ($\Delta f_{out}=20MHz$) satisfies requirement
Performance Comparison

<table>
<thead>
<tr>
<th>Topology</th>
<th>Tech (nm)</th>
<th>f<sub>ref</sub> (MHz)</th>
<th>f<sub>out</sub> (GHz)</th>
<th>TR (%)</th>
<th>PN<sup>a</sup> (dBc/Hz)</th>
<th>Ref. Spur (dBc)</th>
<th>σ<sub>rms</sub> (fs)</th>
<th>P<sub>DC</sub> (mW)</th>
<th>Area (mm<sup>2</sup>)</th>
<th>FOM<sub>b</sub></th>
<th>FOM<sub>c</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Szortyka JSSC '15</td>
<td>SSPLL</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>16.2</td>
<td>-95.4</td>
<td>-104.4</td>
<td>200</td>
<td>42</td>
<td>0.16</td>
<td>-234/-265.9</td>
</tr>
<tr>
<td>Siriburanon JSSC '16</td>
<td>SSPLL</td>
<td>65</td>
<td>36/40</td>
<td>60</td>
<td>15.9</td>
<td>-95.4</td>
<td>-125.4</td>
<td>290</td>
<td>32</td>
<td>0.7</td>
<td>-235.7/-267.5</td>
</tr>
<tr>
<td>El-Halwagy TMTT '17</td>
<td>PLL+SSPLL</td>
<td>65</td>
<td>230</td>
<td>28</td>
<td>24.5</td>
<td>-112.8</td>
<td>-121.8</td>
<td>79</td>
<td>27</td>
<td>0.28</td>
<td>-247.7/-268.6</td>
</tr>
<tr>
<td>Yoon ISSCC '18</td>
<td>PLL+ILFM</td>
<td>65</td>
<td>120</td>
<td>29</td>
<td>18.2</td>
<td>-99.1</td>
<td>-115.8</td>
<td>206</td>
<td>36.4</td>
<td>0.95</td>
<td>-238.1/-262</td>
</tr>
<tr>
<td>Yang ISSCC '19</td>
<td>SSPLL</td>
<td>65</td>
<td>103</td>
<td>30</td>
<td>14.9</td>
<td>-109</td>
<td>-120</td>
<td>71</td>
<td>15.3</td>
<td>0.24</td>
<td>-251/-275.2</td>
</tr>
<tr>
<td>Kim JSSC '19</td>
<td>SSPLL+ILFM</td>
<td>65</td>
<td>100</td>
<td>30</td>
<td>10.2</td>
<td>-102</td>
<td>-122</td>
<td>77</td>
<td>41.8</td>
<td>0.32</td>
<td>-246/-270.6</td>
</tr>
<tr>
<td>Liao JSSC '20</td>
<td>RSPPLL+ILFM</td>
<td>45</td>
<td>80</td>
<td>36</td>
<td>6.9</td>
<td>-93.9</td>
<td>-108</td>
<td>251</td>
<td>20.6</td>
<td>0.41</td>
<td>-238.9/-265.4</td>
</tr>
<tr>
<td>This Work TMTT '21</td>
<td>SSPLL + SS LD</td>
<td>65</td>
<td>100</td>
<td>40.5</td>
<td>6.8</td>
<td>-96.6</td>
<td>-106.9</td>
<td>228</td>
<td>8.8</td>
<td>0.6</td>
<td>-243.4/-269.5</td>
</tr>
</tbody>
</table>

^a Normalized to 40.5GHz
^b FOM₁=20 log(jitter/1s) + 10 log(P_{DC}/1mW)
^c FOM₂=20 log(jitter/1s) + 10 log(P_{DC}/1mW) + 10 log(f_{ref}/f_{out})
Outline

❑ Apps & Pros of On-Chip mmWave Signal Generation
❑ Existing Topologies for Frequency Synthesis
❑ Low-Power & Low-Noise mmWave SSPLL
 ❑ Proposed Dividerless Frequency Acquisition for SSPLL
 ❑ Prototype 8.8mW 40.5GHz SSPLL
❑ Charge Pump Current Mismatch Compensation for SSPLL
 ❑ Proposed compensation technique for SSPLL
 ❑ Prototype SSPLL with CP compensation
❑ Conclusion
Motive: CP Current Mismatch due to CLM

- Channel-length modulation (CLM) dominantly determines CP current mismatch.
- CLM is a function of V_{ctrl}.
- With high-freq references, CLM is even worse for the high-BW CP with short-channel devices.
- Exclusive to SSPLL:
 - CP currents vary with sampled input V_{sam}, unlike the constant-biased currents in PFD/CP PLL.
 - Existing compensation for PFD/CP PLL not eligible.
Motive: Effects of CP Current Mismatch on SSPLL

Exclusive Effect for SSPLL
- SSPD gain degeneration

Other Effects
- CP gain distortion
- Limited Vctrl locking range (LR)
 - Vctrl cannot further increase/decrease
 - More frequency overlap between adjacent VCO banks
 - More VCO banks to cover the total TR: more RF loss

[Wang & Momeni CICC '21]
Traditional PLL CP Current Mismatch Compensation

Traditional PLL CP currents are constant:

I_{up} = I_{dn}

How to compensate?

Sub-Sampling PLL

SSPLL CP currents vary with input (CP is gm):

I_{up} ≠ I_{dn}

How to compensate?
Proposed CP Mismatch Compensation for SSPLL

Compensation Feedback
- Dummy CP with **identical** sizing of CP to copy the current mismatch
- Compensation FB forces $V_{ctrl,dum}$ to track V_{ctrl}
- Identical compensation currents, I_{comp} and $I_{comp,dum}$, for CP and CP$_{dum}$
- With any V_{ctrl} value, since $I_{out,dum}=0$, I_{out} is also 0 when CP input is $V_{sam}=0$. **Mismatch is cancelled.**
- FB **doesn’t prevent** V_{sam} from changing V_{ctrl}

Design Considerations
- Design and layout matching for CP and CP$_{dum}$
- Enough BW for **timely** compensation
- Miller compensation to ensure **stability**

[Wang & Momeni TCAS-II ’21]
Simulated Compensation Result

Mismatch Compensation
- Simulate mismatch vs V_{ctrl} with CP input $V_{\text{sam}}=0$
- Uncompensated CP mismatch: -50% to +70%
- Compensated CP mismatch: -5% to +14%

Transient Simulation
- During FA, $V_{\text{ctrl,dum}}$ tracks V_{ctrl} timely
- Compensation FB loop is stable
Prototype 40.5GHz SSPLL with CP Compensation

Total: 9.5mW

Compensation: 0.36mW

100MHz Crystal

IF-PLL

x9

900MHz

Frequency

Acquisition

100MHz

Reference

SSPD

Compensated CP

Mismatch

Comp.

40.5GHz

VCO

Varactor

Banks

Output Buffer

Buffer

Gm

Digital Logic

Timer & State Machine

Sub-Sampling Lock Detector (SSLD)

fout 40.5GHz

40.5GHz

Decoupling Caps

VCO

Mid- Buf

Inj- Buf

SSPLL

(SSPD, Comp CP, LPF)

65nm CMOS, core area 0.6mm²

[Wang & Momeni TCAS-II ’21]
Measurements: Vctrl Locking Range

- Measure **locked Vctrl range** to evaluate the mismatch compensation result.
- Define an FOM to evaluate the **efficiency** in utilizing available CP supply voltage:
 \[
 \eta_{V_{ctrl}} = \frac{\text{Total TR (Hz)}}{\text{Total VCO bank number} \times V_{DD,CP} (V)}
 \]
- To cover the 10% TR:
 - **Uncompensated** CP needs 10 banks: \(\eta_{V_{ctrl}} = 50\% \)
 - **Compensated** CP needs 7 banks, \(\eta_{V_{ctrl}} = 72\% \)
- Improves bank efficiency: **Lower loss**
Measurements: Phase Noise & Jitter

- In-band PN is dominated by reference, CP compensation added noise is minute.
- No CP comp: -100.0/-105.9 dBc/Hz@1/10MHz, Jitter=204fs
- With CP comp: -100.5/-105.9 dBc/Hz@1/10MHz, Jitter=192fs

- With CP compensation, SSPLL Vctrl locking range is extended, and SSPD gain distortion is alleviated.
Performance Comparison

<table>
<thead>
<tr>
<th>Topology</th>
<th>Tech (nm)</th>
<th>f_{ref} (MHz)</th>
<th>f_{out} (GHz)</th>
<th>TR (%)</th>
<th>η_{Vctrl} (%)</th>
<th>P_{N}^a(dBc/Hz)</th>
<th>Ref. Spur (dBc)</th>
<th>σ_{rms} (fs)</th>
<th>P_{DC} (mW)</th>
<th>Area (mm2)</th>
<th>FOM$_1^b$</th>
<th>FOM$_2^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szafranka JSSC '15</td>
<td>SSPLL</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>16.2</td>
<td>33</td>
<td>-95.4</td>
<td>-104.4</td>
<td>-40</td>
<td>200</td>
<td>42</td>
<td>-234/-265.9</td>
</tr>
<tr>
<td>Siribunanon JSSC '16</td>
<td>SSPLL</td>
<td>65</td>
<td>36/40</td>
<td>60</td>
<td>15.9</td>
<td>30</td>
<td>-95.4</td>
<td>-125.4</td>
<td>-73</td>
<td>290</td>
<td>32</td>
<td>-235.7/-267.5</td>
</tr>
<tr>
<td>El-Halwagy TMTT '17</td>
<td>PLL+SSPLL</td>
<td>65</td>
<td>230</td>
<td>28</td>
<td>24.5</td>
<td>19</td>
<td>-112.8</td>
<td>-121.8</td>
<td>-63</td>
<td>79</td>
<td>27</td>
<td>-247.7/-268.6</td>
</tr>
<tr>
<td>Yoon ISSCC '18</td>
<td>PLL+ILFM</td>
<td>65</td>
<td>120</td>
<td>29</td>
<td>18.2</td>
<td>N/A</td>
<td>-99.1</td>
<td>-115.8</td>
<td>-83</td>
<td>206</td>
<td>36.4</td>
<td>-238.1/-262</td>
</tr>
<tr>
<td>Yang ISSCC '19</td>
<td>SSPLL</td>
<td>65</td>
<td>103</td>
<td>30</td>
<td>14.9</td>
<td>26</td>
<td>-109</td>
<td>-120</td>
<td>-63</td>
<td>71</td>
<td>15.3</td>
<td>-251/-275.2</td>
</tr>
<tr>
<td>Kim JSSC '19</td>
<td>SSPLL+ILFM</td>
<td>65</td>
<td>100</td>
<td>30</td>
<td>10.2</td>
<td>N/A</td>
<td>-102</td>
<td>-122</td>
<td>-58</td>
<td>77</td>
<td>41.8</td>
<td>-246/-270.6</td>
</tr>
<tr>
<td>Liao JSSC '20</td>
<td>RSPLL+ILFM</td>
<td>45</td>
<td>80</td>
<td>36</td>
<td>6.9</td>
<td>60d</td>
<td>-93.9</td>
<td>-108</td>
<td>-60</td>
<td>251</td>
<td>20.6</td>
<td>-238.9/-265.4</td>
</tr>
<tr>
<td>This Work</td>
<td>No CP comp</td>
<td>SSPLL</td>
<td>65</td>
<td>100</td>
<td>40.5</td>
<td>9.8</td>
<td>50</td>
<td>-100</td>
<td>-105.9</td>
<td>-41.7</td>
<td>204</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>CP comp</td>
<td></td>
</tr>
</tbody>
</table>

a Normalized to 40.5GHz
b FOM$_1$=$20 \log(jitter/1s) + 10 \log(P_{DC}/1mW)$
c FOM$_2$=$20 \log(jitter/1s) + 10 \log(P_{DC}/1mW) + 10 \log(f_{ref}/f_{out})$
d Calculated with $2V_{DD,CP}$ due to the differential V_{ctrl}
Outline

- Apps & Pros of On-Chip mmWave Signal Generation
- Existing Topologies for Frequency Synthesis
- Low-Power & Low-Noise mmWave SSPLL
 - Proposed Dividerless Frequency Acquisition for SSPLL
 - Prototype 8.8mW 40.5GHz SSPLL
- Charge Pump Current Mismatch Compensation for SSPLL
 - Proposed compensation technique for SSPLL
 - Prototype SSPLL with CP compensation
- Conclusion
Conclusion

• On-chip mmWave SSPLL:
 • Low power consumption & low noise;
 • Promising candidate for **IoT sensors**: displacement/vibration, chemical, atomic clock etc.

• A **dividerless frequency acquisition** structure is proposed to achieve sub-10mW record low power consumption in a 40.5GHz SSPLL.

• A low-power **charge pump current mismatch compensation** method for SSPLL is proposed to increase supply voltage utility efficiency by 50%.

• Proposed techniques enhance SSPLL’s eligibility in **power-stringent** applications, especially for IoT sensors design.
Thank you!
References

