

IoT for Healthcare

Trade-Offs Between Diagnosis and Usability

Jens Kirchner Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

Agenda

- 1. IoT for Healthcare
- 2. Stakeholders and their Interests
- 3. Example Conflict of Objectives: Diagnostic Information vs. Energy Consumption
- 4. Approach 1: Sensor Selection
- 5. Approach 2: Data Preselection
- 6. Conclusion

IoT for Healthcare

Why to Continuously Monitor Vital Signs?

Example 1: Atrial fibrillation

Duration of an AF episode: mostly < a few minutes

⇒ Diagnosis of diseases with transient symptoms

Why to Continuously Monitor Vital Signs?

Example 2: Acute cardiac decompensationRegular follow-ups:every 3–6 monthsTime for development of acute decompensation:
~ 1–2 weeks

⇒ Improved therapy by quick adaptation to the patient's needs

- Sensor—actor systems
- Feedback to patient
- Feedback to treating physician

Why to Continuously Monitor Vital Signs?

Example 2: Acute cardiac decompensation

Sensors

- Intracardiac ECG (morphology & heart rate)
- Activity
- Thoracic impedance
- Intracardiac impedance
- Blood pressure
- Body weight

Information beyond Diagnostic Markers

Example 3: Activity Classification

- Purpose: Context information for interpretation of other sensor data Indicator for decreased physical capability
- Challenge: Properly distinguish different states of physical/mental load and disease-related causes
 - e.g. running
 - recumbent bike
 - exciting movie
 - cardiac disease

Fusion of different sensors / IoT devices needed for sensitive and specific diagnostic markers and context information

The Top 10 in Burden

Disease	Lifetime prevalence [%]	Fraction of deaths [%]	Fraction of costs [%]	Fraction of YLD metric [%]
Hypertensive heart disease	20–30	3.7	3.7	0.1
Atrial fibrillation & Congestive heart failure	15 2	10.9	3.1	2.2
Diabetes mellitus	6–7	2.6	2.6	5.6
Ischemic heart disease	5–10	16.0	2.5	1.3
COPD & Asthma	5–8 5	3.1	2.1	3.9
Dementia	3	1.5	4.3	3.0
Kidney disease	2–12	2.1	0.5	1.6
Stroke	2–3	7.5	3.3	0.9
Parkinson's disease	2	0.7	0.9	0.2
Pneumonia	2	2.6	0.6	0.7

Ranges indicate different published figures. Cancer not considered. [Bauer S. Master's thesis, LTE/FAU, 2017]

Comorbidities

	Hypert. heart dis.	Atrial Fibrill.	Diabetes	lschemic heart dis.	COPD	Asthma	Dementia	Kidney dis.	Stroke	CHF	Parkinson	Pneumon.
Hypertensive heart disease			Х		Х			Х				
Atrial fibrillation												
Diabetes mellitus					Х						Х	
Ischemic heart disease	Х		Х		Х			Х				
COPD												Х
Asthma												Х
Dementia	Х		Х	Х					Х	Х	Х	
Kidney disease	Х		Х									
Stroke	Х		Х	Х				Х		Х		
CHF												
Parkinson disease							Х					
Pneumonia					Х		Х	Х	Х		Х	

J. Kirchner: *IoT for Healthcare* | IoT Vertical and Topical Summit at RWW2022

Conclusion

Purpose continuous disease monitoring

- Diagnosis of diseases with transient symptoms
- Improved therapy by quick adaptation to the patient's needs

Diseases for continuous disease monitoring

- Diseases with transient symptoms
- Chronic diseases (cardiovascular, respiratory, renal, metabolic, mental)
- Keep comorbidities in mind!

IoT for continuous disease monitoring

- Sensor fusion for discrimination of different situations in daily life and different disease states

Stakeholders and their Interests

Stakeholders and their Interests

 Patient

 ⇒ Diagnostic/Therapeutic quality

 ⇒ Integrability into daily life

Treating Physician

Diagnostic/Therapeutic quality

⇒ Integrability into clinical routine

Producer⇒ Profit from investments

Health Insurances Reduced costs for diagnosis & Regulatory Authorities
 ⇒ Ethical aspects, particularly patient safety

treatment

Stakeholders and their Interests in Summary

Diagnostic/Therapeutic quality

- ⇒ Signal quality
- Data evaluation quality
- ➡ Robustness
 - ⇒ Full coverage
 - ⇒ Effectiveness of treatment

Integrability into daily life

- ⇒ Non-stigmatization
- Light weight, small size
- 🖙 Long battery life
- ⇒ No long cables

⇒ How to achieve sufficient functionality with limited energy?

Argus® II retinal prothesis system [http://www.secondsight.com]

Example Conflict of Objectives: Diagnostic Information vs. Energy Consumption

Conflict of objectives

Diagnostic information

- Increase number of sensors for more information
- Increased amount of transmitted data for data fusion

Battery lifetime

- Decrease number of sensors
- Decrease amount of transmitted data
- ... for lower power consumption

Approach 1: Sensor Selection

Idea

When selecting the sensors for diagnosis, consider both ...

- relevance for diagnostic purpose and
- power consumption

Example Activity Classification: Concept

Sensor Platform

- Sensors: accelerometer
 - gyroscope barometer
- Sensor position: upper back
- Arduino micro

Power consumption of sensor modules

Gyroscope	11,880 µW	
Accelerometer	1,650 µW	
Barometer	3 µW	

⇒ Power consumption dominated by gyroscope

MPU-6000 and MPU-6050 Product Specification Revision 3.4, InvenSense, Inc. MS5611-01BA03 Barometric Pressure Sensor, with stainless steel cap, Measurement Specialties, Inc.

Example Activity Classification: Methods

Activities for Classification

- Standing
- Walking in the flat
- Walking upstairs / downstairs
- Jogging

Study Population

- N = 20 (9/11 male/female)
- 24 ± 4 years old (21–38yr)

Data Analysis

- 261 features derived from sensor data
- *k* nearest neighbor algorithm
- Optimization w.r.t. F1 score

Example Activity Classification: Results

	Sensor combination						
	A+G+P	A+G	A+B	G+B	Α	G	В
F1 score [%]	95.7	95.1	95.0	93.6	91.4	90.9	62.1
Power consumption [mW]	13.5	13.5	1.7	11.9	1.7	11.9	0.003
Normal. computation time [%]	100	92	55	44	39	41	92

A: accelerometer; G: gyroscope; B: barometer J. Kirchner, S. Faghih-Naini, P. Bisgin, G. Fischer, 2018 IEEE SENSORS, pp. 1-4

⇒ With reduced sensor set: power reduced by 88%

power reduced by 88% computation time by 45% F1 score worsened by only 0.7%

Approach 2: Data Preselection

Idea

- Data pre-analysis "at the edge"
- Identify and transmit only data that might be diagnostically relevant
- Computationally demanding data analysis after data transmission

Example Detection of Atrial Fibrillation: Concept

- Identify data segments that might contain AF episodes
- Discard data segments with clear normal sinus rhythm (NSR)
- Optimize selection algorithm for maximum sensitivity

Example Detection of Atrial Fibrillation: Methods

Database

- PhysioBank: MIT-BIH Atrial Fibrillation
 Database
- 16 usable recordings from patients with AF (10h duration each)
- 184 AF episodes
- Fraction of AF of entire data: ~37 %

Detection Algorithm for preselection

- A-posteriori analysis
- Detection criterion:
 standard deviation of heart rate > threshold
- Optimization of free parameters w.r.t. max. sensitivity = $\frac{\# \text{ data segments with correctly detected AF}}{\# \text{ data segments with AF}}$

Alternative optimization ("stand alone"):
 sensitivity = specificity

Goldberger AL et al. Circulation 2000; 101(23): e215–e220. Moody GB, Mark RG. Computers Cardiol 1983; 10(1): 227–230.

Example Detection of Atrial Fibrillation: Results

	"Preselection"	"Stand-alone"		
Sensitivity	99.6%	80.206		
Specificity	38.4 %	89.3 %		
Episode sensitivity	100 %	100 %		
Data reduction (off all data)	26.4 %	61.1 %		
Data reduction (off NSR)	38.4 %	89.5 %		

J. Kirchner, S. Schild, G. Fischer, 2017 IEEE Int. Symp. Med. Meas. Appl. (MeMeA), pp. 320-325

⇒ Reduction of non-AF data with simple "preselection" algorithm by 38% with "stand-alone" algorithm (higher specificity) by 90%

Conclusion

Conclusion

Potential Benefits

- Diagnosis of diseases with transient symptoms
- Improved therapy by quick adaptation to the patient's needs

Potential Conflicts

- Amount of data: functionality vs. power consumption
- Personal data: data protection vs. data for product improvement

- ...

Potential Solutions

- Sensor selection
- Data preselection (data evaluation "at the edge")

Thanks a lot for your attention!

Questions?